CHRISTMAS MESSAGE
From the Chairman of the Board

SPECIAL PRODUCTS DIVISION
New pioneer in our corporate structure

“TOP SCIENTIST ON THE NEW FRONTIER”
Dr. Jerome B. Wiesner, former Sprague Electric Director, now Chief Scientific Advisor to the President

SOCIAL SECURITY CHANGES
Answers your questions about the new provisions

1961 SERVICE AWARDS
A plant by plant breakdown of awards
Dear Friends,

This is a most appropriate time of the year to assess our progress and to consider our prospects for the future. We enjoy, particularly at the holiday season, a number of traditions that give us both a measure and a guide to keep pace with an everchanging world. It is surely appropriate that we pause, give thanks, and weigh our progress together during the year, from a personal perspective.

It has been said that, “All things change, and we change with them.” This thought accurately characterizes our Company’s activities in 1961.

The Plymouth, New Hampshire Plant was brought into operation early in the year. This was followed by the start of construction of our new Research Laboratory building in North Adams.

The year had just passed the half-way point when we acquired our twenty-first manufacturing plant in Hillsville, Virginia.

It would have been difficult to provide the necessary leadership for the expansions, acquisitions, and product development throughout the year without some realignment of key Company personnel.

Among the many significant changes this year was the election of Frederick R. Lack to the position of Senior Vice President – Research. Neal W. Welch, Senior Vice President – Marketing and Sales, and Dr. Wilbur A. Lazier, Senior Vice President – Engineering, were elected to the Board of Directors.

The Board of Directors elected Dr. Jerrold R. Zacharias a member, to replace Dr. Jerome B. Wiesner, who resigned to become Special Assistant for Science and Technology to the President of the United States.

Richard K. Morse was appointed Division Manager of the newly established Resistor Division with headquarters in Nashua, New Hampshire.

With sales probably exceeding seventy-three million dollars, Sprague Electric in 1961 will record the largest sales-volume year in its history. This accomplishment, made possible by the energetic teamwork of our whole organization, has enabled us to retain our established position as a leader in the dynamic electronic industry. With continued employee enthusiasm and cooperation we shall retain this position of leadership.

To all of you this brings grateful thanks and best wishes for a Merry Christmas and a happy and healthy New Year.

Robert C. Sprague
Mr. David B. Peck, (center) Vice President - Special Products; examines Tantapak® assemblies as A. Kelly Hooks, Chief Engineer-East (left) and Robert D. Smith, Production Manager (right) look on.

Gilbert B. Devey, Marketing Manager, (2nd from left) consults with members of the Marketing Staff as they prepare a sales proposal for a customer. Packaging of components has become a highly specialized skill in the electronics industry.

The Special Products Division came into existence on the first of February, 1958, and was the first division to be formed within the Sprague Electric organization. More recently resistor and transistor divisions have been formed, with organizational arrangements which have been based upon the experience gained in the operation of SPD.

Since the initial operations of the Sprague Electric Company in 1926, and until the formation of the division, the Company had always been operated as a centralized organization, with single sales and field engineering, manufacturing, and engineering departments, each headed by an experienced senior executive of the Company. As the Sprague name attained a position of leadership in the electronic component industry and attained a volume of business in excess of forty million dollars per year, it became evident that the central organization was not the most efficient for handling of

SPD Process Engineering Laboratory at Union Street. A printed wiring board used in magnetic shift register assemblies is being examined at one stage of manufacture.

Production Engineering performs a key role in translating customer purchase requirements into manufacturing specifications used in the production line.

James Nicol, General Foreman, checks Toroidal core winding which may be done in spaces as small as 0.08 inch or up to 6 inches in diameter as a routine matter.
NEW PIONEER IN OUR CORPORATE STRUCTURE

day-to-day operational programs and needs of certain specialized product lines.

Working with scientists at Lincoln Laboratories of M. I. T., Sprague engineers developed the 10Z and 20Z pulse transformers which became the first high reliability computer type pulse transformers to be used in military production. The bulk of these highly technical units were used in the important Sage I defense computers, manufactured by IBM, starting in 1955. Owing to the highly complex nature of these products, and an almost inevitable “custom designed” requirement by the end user, very close coordination was necessary between field engineering, manufacturing, and central engineering to satisfy rapid sampling and production schedules demanded by the customers and being offered by competitors.

Accordingly, the division was organized to place engineering, production engineering, and QAR, manufacturing, and field or applications engineering, and the various important direct supporting services in a single management unit.

The manager of the division is David B. Peck, now a Vice President of the Company. He has been with the Sprague Electric Company since 1943 and worked in the central research and engineering department until the division was formed. His various assignments included senior responsibilities in the area of plastic film capacitor development, ceramic body development and engineering, and his last assignment prior to formation of the division was as supervisory engineer heading all electrolytic capacitor research, development and engineering activities, including both aluminum and tantalum electrolytic capacitors.

Marketing manager of the division is Gilbert B. Devey, who had been in the Field Engineering department, with his last assignment having been as coordinator of computer components of all types. Norton Cushman, who had been supervisory engineer in charge of magnetic components in Research and Engineering for three years, was appointed manager of electrical development and engineering when the division was formed.

During the first two years of its organization, the division concentrated upon broadening its engineering capabilities and especially developing a much broader customer list, so that the division would not be too dependent upon any one customer for continuity of its production. As a result of this effort, when the Sage I computer production ceased, the division was able to maintain and gradually increase its sales volume despite the cessation of Sage I computer production in 1959.

SPD has a heavy effort in microelectronic packaging. Packing densities as high as 210,000 component parts per cubic foot have been achieved in this area.

These three operators on Tantapak* assembly clip, de-burr and straighten wires on Solid Tantalum capacitors prior to their being welded together in Tantapak* units.

Quality Assurance and Reliability is taken seriously. Precision measurements are made on pulse transformers and magnetic shift registers on a 100% basis.
Specially shaped housings are designed and produced in various colors of epoxy resins to meet unique customer requirements.

Owing to the highly technical nature of the specifications and characteristics demanded by computer designers for various components and sub-assemblies, the Division developed a unique competence in precision testing in mass production quantities. The Division also provided test equipment necessary to evaluate and guarantee performance of such components, more than any other company in the component industry. This technology led to the broadening of the product line into functional computer sub-assemblies such as flip-flops, which did not employ magnetic components, but rather were based upon transistors and other semi-conductor circuit elements.

One of the most important raw materials in the production of switching transformers and shift registers were so-called bobbin cores, small doughnut shape magnetic cores upon which the transformer windings were placed. A small company named Dynacor, Inc., founded by Carroll W. Lufcy, was established as one of Sprague's best raw material suppliers for these critical cores and in 1956, Sprague Electric purchased all the assets of Dynacor and since this time it has been operated under the leadership of Mr. Lufcy. Its line of bobbin and larger tape cores is used not only by the Special Products Division, but by many companies in the computer and electronic industries.

As a step towards greater operating efficiency and broadened market coverage, Dynacor was merged directly into the Sprague Electric Company as of October 1, 1961. A modern plant, completed in 1960 in Rockville, Maryland, houses all core engineering and manufacturing operations. This plant is guided by Mr Lufcy, assisted by Robert Vollmer as operations manager.

Meanwhile, in the Western United States, the division was establishing, through sampling and production, a substantial amount of business with West Coast electronic...
firms. At the same time, the filter department broadened its sales to West Coast customers. In both cases it became apparent that facilities for sampling and production of these complex devices was necessary "on-the-spot". A new modern plant of the Sprague Electric Company was accordingly built in early 1958, in Visalia, California, with manufacturing under the direction of Martin J. Daigneault. The Special Products Division installed a development and engineering facility in the Visalia plant, headed by Robert P. Sheehan. Bob Sheehan and his competent technical staff, in cooperation with the SPD marketing group, and the area Sprague sales offices, established a large magnetic business. This effort now accounts for a substantial fraction of total SPD sales.

In mid-spring, 1961, Marty Daigneault was promoted to the position of factory manager of the new Plymouth plant. Bob Sheehan became plant manager at Visalia, with Bob Rogers replacing him as chief engineer for Special Products.

Robert Sheehan, Plant Manager, (2nd from right) discusses various production problems with Frans Fonteyn, Production Manager, (2nd from left), Donald Brumley, Superintendent of Quality Control, (left) and Lawrence Hobson, SPD Product Specialist (right) at the Visalia Plant.

As elsewhere, design drafting is an important function at the Visalia Plant.

Capacitor rolling, major manufacturing process, being inspected by the department foreman prior to the impregnation process at the Visalia Plant in California.

Characteristics and measurements are checked in finished units through the use of modern precision meters and oscilloscopes in the Magnetics Testing area of the Visalia Plant.

Members of the engineering staff at Visalia check some magnetic products prior to their shipment to numerous electronic manufacturers on the West Coast of the United States.
The division is further expanded with addition

Located in Renaix, Belgium, the Electromag S/A plant is a former textile mill. This operation will handle Sprague Electric's growing overseas market for computer components in the European area.

The electronic computer industry in Europe is about five years behind American industry. Division marketing personnel noted the increasing amount of export orders going into Europe. They also were aware that Sprague components purchased by U.S. computer customers were in turn being shipped to Europe by these customers for use in products manufactured in their European plants. As a result of a market survey conducted in the summer of 1960, it was decided to construct and operate a division factory in the Common Market area, to capitalize upon Sprague technical know-how and competence on a ground floor position in the basically new computer industry in Europe. A factory in Renaix, Belgium, was obtained in the fall of 1960 and is now being managed by Norton Cushman. Production started in the summer of 1961 to serve computer manufacturers in Europe and the United Kingdom.

Consideration is continually given to product families to diversify the division and company into growth industries other than computer types. One such opportunity was fulfilled through the purchase of a small engineering laboratory, Vectrol Engineering, Inc. in Stamford, Connecticut, in the fall of 1960. This small facility, founded by Walter J. Brown, President, concentrates in the development of electrical “control” devices. These devices are circuit combinations through which one may control large amounts of power such as used in large DC motors, electronic power supplies, and the like. With the addition of Sprague management know-how and SPD support, this

The Winding Department at Electromag winds toroidal cores for pulse transformers and magnetic shift registers. Counterparts of these operations can be found at SPD plants in this country.

In the Electromag S/A Engineering Department complicated electronic core measuring equipment designed and developed by Sprague Electric is used in testing units.

Mr. Walter J. Brown, President and Director of Engineering, and Mr. Paul W. Maynard, Sales Engineer, discuss a sales proposal at Vectrol Engineering, Inc., Stamford, Connecticut.

VecTrol, Inc. is located in Stamford, Connecticut. It is a modern facility with a well equipped laboratory and model shop. There are approximately 5,000 square feet of space for use in advance development projects.

Mr. Walter J. Brown, President and Director of Engineering, and Mr. Paul W. Maynard, Sales Engineer, discuss a sales proposal at Vectrol Engineering, Inc., Stamford, Connecticut.
A factory installation was maintained by Sprague in Bennington, Vermont since 1950. Here, the Ceroc® and Ceron® high temperature magnet and resistance wires were produced for sale to customers in the high temperature motor and transformer industry, and in the case of the resistance wire, for use as a raw material in Sprague Koolohm® and Blue Jacket® resistors. In addition the Bennington plant tin-coated lead wires for Sprague capacitors and resistors, to assure the type of quality required for customer solderability needs. This facility, occupying the first floor of the Bennington plant, was transferred to the Special Products Division in September 1960, permitting single administration for the total plant operation. SPD computer subassemblies are made on the second floor, while more recently the third floor has been renovated for instrument development and manufacturing.

The numerous product lines designed, manufactured and sold by the Special Products Division bring together the combined skills of many people. Considerable growth in diversity of product line, and breadth of sales penetration in the electronics market has resulted from the concerted efforts of everyone in the Division. It is expected that the Division will expand its scope of interest in the years ahead, and that it will make substantial contributions to the continuing growth of the Sprague Electric Company.

The Magnetic Assembly line at the Bennington Plant produces custom designed units to meet input and output conditions specified by the customer for high reliability units.

Harold White III, Manager of Wire Coating Operations, Bennington Plant, (left) observes a step in the complicated process of wire coating designed to meet our customers specifications.

Richard Peterson, Manager of Instrument Operations, (left) and William Novacek, Chief Engineer, examine sub-units used in electronic instruments made by the Special Products Division.
Dr. Jerome Wiesner, the President’s science adviser, is in some respects as much a crusader for ideas as he is a researcher for scientific knowledge.

Editor’s Note:
Dr. Wiesner was formerly a Director of Sprague Electric Company and resigned in January 1961 to become Mr. Kennedy’s Science Adviser.

On the informal social ladder which establishes prestige and influence of scientists, the scientific community is roughly divided into two groups. At the top have been the scientists who were raised in the academic quiet of the pre-war research laboratory and who reached their moment of greatest achievement with the creation of the atom bomb. Beneath them have been the scientists who were baptized in the frenzied, secret research of the wartime and post-war periods and who have matured intellectually and scientifically amid the scientific and technological revolution begun by their elders.

The presence of Dr. Jerome Bert Wiesner, a former professor at the Massachusetts Institute of Technology, in the office of Special Assistant to the President for Science and Technology symbolizes a significant changing of the guard within the scientific community. With Wiesner, the post-war generation of scientists has moved into the position of leadership and authority.

Wiesner, at 46, is the top planner, arbitrator and counselor of scientific policy within the Government, and, thus, throughout the scientific community at large. His titles are as diffuse as his authority and influence. Aside from being the President’s Special Assistant for Science and Technology, he is chairman of the President’s Science Advisory Committee – the eighteen-man committee created late in 1958 by the Eisenhower Administration – and chairman of the Federal Council on Science and Technology – the inter-agency committee also created by the Eisenhower Administration to coordinate Government scientific programs.

There is also a close, informal relationship between the President and the young engineer who was one of his campaign confidantes and advisers. Hardly a day passes that Wiesner does not talk to the President, either in person or by telephone. This summer, when the President has been commuting week-ends to Cape Cod, Wiesner has been a frequent passenger on the Presidential plane—heading for Martha’s Vineyard and a week-end with his own family.

If the bustle of activity is more apparent than the accomplishments, it is because the President’s science adviser operates behind wall of White House secrecy, somewhat to the dismay of Congress which would like to be privy to his scientific policy advice. In fact, one change now being considered by Wiesner and Congress is to institutionalize his office by law so that the President’s scientific adviser can recommend scientific policy to Congress in much the same manner that the President’s Council of Economic Advisers reviews economic policy with Congress.
M. I. T. said of him: "The most important thing about Jerry is that he is a man of very strong principles, and he believes in trying to do what one thinks is right. As a result, Jerry is always living in issues right up to his ears."

The issue that has been uppermost in Wiesner's mind for the past few years has been disarmament, which he believes must be achieved within the next decade if the world is not to be consumed in a nuclear holocaust. When word first seeped out that he was to become the President's scientific adviser, grumblings echoed down the corridors of the Pentagon and through the cocktail rooms of the Army-Navy Club about how "that scientific crowd is taking over."

In a way, Wiesner backed into his concern with disarmament. In 1957, he had been staff director for the Gaither committee's still-secret study of America's military posture. In that role, he was one of the most ardent advocates of accelerated development and production of ballistic missiles.

The Gaither report led President Eisenhower to call for a technical group to help him on disarmament problems. Wiesner was named to this panel and in 1958 served as staff director for the American delegation to the abortive "surprise attack" disarmament conference in Geneva. For the first time, he began to appreciate the urgency and complexity of the disarmament problem.

Wiesner believes, therefore that "the problem confronting us is to design a comprehensive arms-control system which commences with low-risk measures that can be carried out in the atmosphere of suspicion and fear, but which clearly lead us to the ultimate objectives."

In both a technical and a social sense, communication has long been the principal preoccupation of Wiesner. At M. I. T., where he pioneered a new approach in engineering education by revising the electrical-engineering course to include more basic science, he was the director of the Research Laboratory of Electronics and the Center for Communications Sciences. The center brought together physicists, biologists, mathematicians, psychologists, linguists and electrical engineers to explore the question of how men communicate with one another and how men can communicate with machines and machines with one another.

Continued on page 12
Legislation amending the Social Security laws went into effect on August 1, 1961. Congress, in approving these amendments, provided for early retirement checks for about 560,000 men, increased benefits for many others, and more aid for widows and elderly persons. How do these changes affect you?

A larger bite from your paycheck starting in January and increases in existing coverage. The following is a short summary of these changes in the law and answers to questions that may have troubled you.

Q Are all employees of the Sprague Electric Company covered by social security?
A Yes, every Sprague Electric employee, according to Federal law, must pay social security taxes.

Q When do I start paying the increased 1962 social security taxes?
A You start paying the increase in the first paycheck you receive in January 1962, regardless of the fact that part or all of the services for which the pay is given may be performed in 1961.

Q Who pays these social security taxes?
A You and the Company — not the Government. On January 1, 1962, when the boost goes into effect, both your payroll deduction and the tax Sprague Electric pays for social security will be raised from 3 to 3 1/8%, or a total of 6 1/4%.

Q How much will social security cost me in 1962?
A Your total social security tax will rise from $144 in 1961 to $150 in 1962. Deductions continue from your paycheck on the first $4,800 you earn during the year. When a total of $150 has been deducted, you no longer have the tax taken from your paycheck for the balance of the year. Of course, the same sequence starts again in January 1963 and for each year you are employed by Sprague.

Q Will there be further increases scheduled in social security taxes?
A Yes, the amended law calls for raises in 1963 of 1/2% for both you and the Company; again in 1966 another 1/2% and still another 1/2% in 1968. This is a total increase of 1 1/2% during the next six years resulting in a maximum tax for you of $222 as compared to the up and coming tax of $150 in 1962. The Company will also be required to make these same increases in their payments during the same period.

Q How do I become “fully insured” under the amended social security law?
A Under the new law the length of time you have to work to become fully covered by social security is reduced. You are now “fully” insured if you have enough quarters of coverage to equal at least the number of years between January 1951 and the year before the one in which you reach 65 (62 for women), become disabled or die. You must have at least six quarters of coverage to become fully insured. You are fully insured for life when you complete 10 years or 40 quarters of coverage.

Q What is a “quarter of coverage”?
A A “quarter of coverage” is any three-month period, beginning January 1, April 1, or October 1, in which you earn at least $50 wages in a job covered by social security. You receive credit for four quarters of coverage in any calendar year when your earnings totalled the social security maximum, no matter how little you were paid in any single quarter. The maximum for earnings since 1959 has been $4,800 per year.

Q Can I now retire before 65 and still get social security benefits?
Yes, men can retire at 62 under the recently amended social security law. However, if you should decide to retire early, your benefits will be reduced. At 62 you will get only 80% of the benefits you would have received by waiting until age 65. For each month that you wait after age 62, your monthly benefits will be increased.

Here's an example: A worker whose average monthly earnings while employed were $370 would receive $120 if he retired at 65, but only $96 if he stopped working at 62.

In 1956 a law was passed giving women the choice of retiring at any age 62. This is the first time men have had this option.

Q Are those eligible for only minimum benefits affected?
A Yes, minimum benefits for retired workers and survivors have been boosted from $33 to $40 per month.

Q How do the new social security changes affect widows?
A If the widow is 62 or over, her benefits are increased automatically by 10%. In some cases a widow may be eligible for benefits based on either her own or her husband's earnings. The new law still gives her the choice of taking widow's benefits rather than her own. Her local social security office can best advise her of the best course to take, based on the new benefits.

Q How do the changes help aged, dependent parents?
A Benefits for dependent parents are also increased by 10%.

Q Have the types of benefits available been changed?
A No, social security still gives you the three basic types of benefits: retirement benefits for you and your dependents; survivors' benefits for your dependents when you die; and disability benefits, should you become disabled before retiring.

Q Did I get social security credit while I was in the service?
A If you performed active duty or active duty for training in the United States military forces after 1956, your service counts toward social security protection. Your base pay is credited to your social security record.

For active duty after September 15, 1940, and before 1957, free social security credits of $160 per month may be given under certain circumstances. When credits are given, they count the same as wages during civilian work. Because these credits are not actually listed on your record, your social security office will want proof of your military service if you need this credit for your social security account.

Q How can I find out more about how the amended law affects me?
A You'll find your local social security office listed in the telephone directory under United States Government, Department of Health, Education and Welfare, Social Security Administration. Contact them for further information.

You may check the official social security record of wages and self-employment credited to you by writing to the Social Security Administration, Baltimore 35, Maryland. Include your social security number.
Continued from page 9

His interest in communications and electronics goes back to his youth in Dearborn, Michigan, where his father ran a dry-goods store. One of his teen-age projects was to establish a private telephone network with his friends. To string the lines, he hit upon the idea of using a kite. The experiment ended dramatically when the kite dipped too low and the telephone wire fell across an electric-power line, blacking out the neighborhood.

At the University of Michigan—where he earned his way by working as a cook and dishwasher in a local restaurant—Wiesner worked on the theory of radio antennas and the development of devices for correcting speech defects and helping the deaf. After taking his master’s degree in 1940, he went to Washington to become chief engineer of the newly formed Acoustical and Record Laboratory at the Library of Congress.

Over the past decade, Wiesner’s academic career has been frequently interrupted by technical study projects for the Government, so that about half his time has been spent in developing military technology. A series of air-defense studies in 1952 led to his helping set up M. I. T.’s Lincoln Laboratory, the research center which has spawned much of the Air Force’s electronic equipment. His Research Laboratory of Electronics developed the radar technique which made possible the DEW Line as a warning shield against air attack. He also served on the Von Neumann committee, which in 1954 came to the historic decision that the United States should make an all-out effort to develop intercontinental ballistic missiles.

Since Wiesner took over his present post, a significant change seems to have occurred in him and in it. Associates see Wiesner now as more the judicious statesman than the liberal crusader. Although Wiesner’s dealings with the President are far more frequent and intimate than either of his predecessors’, paradoxically he does not seem to be wielding as much direct influence over day-to-day routine. One reason is that new strong points have developed in various fields that used to preoccupy the President’s scientific adviser.

Deliberately, Wiesner is concentrating on the long-range policy and management problems of science and technology, such as the proper balance between various fields of research, the improvement of scientific education and manpower, improved conditions for scientists and engineers working in Government, the stimulation of scientific research and industries in certain regions of the nation, and the role of science and technology in foreign aid and international relations.

Such long-range planning was done only sporadically by Wiesner’s predecessors, largely because of their preoccupation with military and space problems. Under Wiesner, therefore, it is likely that the office of the President’s scientific adviser will come of age as the policy center for American science and technology.

Earlier this year Dr. Wiesner (left) received the 1961 Electronic Industries Association’s Medal of Honor for outstanding contributions to the electronics industry. Shown with Dr. Wiesner are: EIA President L. Berkley Davis, Vice President and General Manager of the Electronic Components Division of the General Electric Company; James E. Secrest, Executive Vice President and Secretary of EIA; Robert C. Sprague, Chairman of the Board of Sprague Electric Company.
A formal program to recognize length of service was started in 1948. Under the present program, awards of pins are made for 5, 10, 15, 20 and 25 years of service. Those who are to receive a 25-year award attend the Quarter Century Club Banquet in North Adams and in addition to the pin, are presented with a gold wrist watch and a certificate symbolizing membership in the Club. The Quarter Century Club was organized in 1951 with 6 members and has grown rapidly in recent years to 228 members.

This past year has been outstanding with 930 employees receiving Service Awards. Even plants relatively new to the Sprague Electric family had numerous employees who were awarded service pins. The Rockville Plant, formerly Dynacor, Inc., had 9 recipients of 5 year pins, the Concord Plant awarded 16 pins for 5 years of service and Visalia had one in this same group.

<table>
<thead>
<tr>
<th>1961 SERVICE AWARDS</th>
<th>YEARS OF SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Adams, Massachusetts (Including Sprague International & Sprague Products)</td>
<td>25</td>
</tr>
<tr>
<td>Sprague of Wisconsin, Inc. (Grafton, Wisconsin)</td>
<td>1</td>
</tr>
<tr>
<td>Nashua, New Hampshire</td>
<td>1</td>
</tr>
<tr>
<td>Bennington, Vermont</td>
<td>4</td>
</tr>
<tr>
<td>Ashe County, North Carolina</td>
<td></td>
</tr>
<tr>
<td>Ponce, Puerto Rico</td>
<td></td>
</tr>
<tr>
<td>Concord, New Hampshire</td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td>1</td>
</tr>
<tr>
<td>Rockville, Maryland</td>
<td></td>
</tr>
<tr>
<td>Visalia, California</td>
<td></td>
</tr>
<tr>
<td>Plymouth, New Hampshire</td>
<td></td>
</tr>
<tr>
<td>Branch Sales Offices</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Camden, New Jersey</td>
<td></td>
</tr>
<tr>
<td>Dayton, Ohio</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
</tbody>
</table>

Total: 49 | 101 | 116 | 437 | 227
The Christmas Spirit

There is a community Christmas project that brings joy to children of the Northern Berkshire section of Massachusetts during the holiday season.

Conceived as a joint project between the Sprague Electric Management Group and the local newspaper, the North Adams Transcript, the idea has mushroomed to include the whole community. Started in 1958 with the wish that every child in the area be remembered at Christmas, the Transcript last year received cash donations of $2,158.96. Sprague Electric compiles a list of recipients from all available sources such as churches, city welfare organizations and the Salvation Army. Toys are purchased for specific age groups and clothing certificates are also given. At a giant workbee, toys are sorted, wrapped and labeled. A day or two before Christmas, deliveries are made by members of Sprague management.

Wouldn't it be wonderful if this idea, which typifies the true Christmas spirit, could spread to many other areas, for surely the donor receives as much pleasure as the recipient.